## Steroidal Alkaloids from the Roots and Rhizomes of Vertrum nigrum L.

by Yue Cong<sup>a</sup>), William Jia<sup>b</sup>), Jing Chen<sup>a</sup>), Shuang Song<sup>a</sup>), Jin-Hui Wang<sup>\*a</sup>), and Yu-Hui Yang<sup>c</sup>)

<sup>a</sup>) School of Traditional Chinese Materia Medica 49<sup>#</sup>, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China

(phone and fax: +86-24-23986479; e-mail: Wjh.1972@yahoo.com.cn)

<sup>b</sup>) Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada

<sup>c</sup>) Jinzhou Medical Colledge, Jinzhou 121001, China

Two new steroidal alkaloids, neoverapatuline (1) and  $(1\beta,3\alpha,5\beta)$ -1,3-dihydroxyjervanin-12-en-11one (2), together with the four known compounds, veratramine (3), rubijervine (4), veratrosine (5), and veratroylzygadenine (6), were isolated from the roots and rhizomes of *Veratrum nigrum* L. Their structures were established through combined analyses of physicochemical properties and spectroscopic evidence. All compounds 1-6 were tested for their cytotoxicities *in vitro* against the human glioma cell line SF188.

**Introduction.** – Veratrum nigrum L., which belongs to the family liliaceae, is a famous traditional medicinal plant in China, which is used for treatment of hypertension, blood-stroke, excessive phlegm, epilepsy, etc. [1][2]. Our present study on the constituents of the roots and rhizomes of Veratrum nigrum L. led to the isolation of the two new steroidal alkaloids 1 and 2 and of the four known steroidal alkaloids 3-6. This paper reports the isolation and structure elucidation of the two new alkaloids, as well as the cytotoxicities of the isolated alkaloids against the human glioma cell line SF188.

**Results and Discussion.** – Compound **1** was obtained as a white powder. Its molecular formula  $C_{29}H_{43}NO_5$  was determined by the pseudomolecular-ion peaks at m/z 486 ( $[M + H]^+$ ) in the ESI-MS and 486.2321 ( $[M + H]^+$ ) in the HR-MS. The structure of **1**, named neoverapatuline, was established as *N*-(methoxycarbonyl)-11-isoveratrobasine by analysis of <sup>1</sup>H- and <sup>13</sup>C-NMR, HSQC, HMBC, and NOESY data (*Table* and *Fig. 1*).

The <sup>1</sup>H-NMR spectrum of compound **1** exhibited signals of five Me groups at  $\delta$ (H) 1.91 (*s*, Me(18)), 1.23 (*s*, Me(19)), 1.01 (*d*, *J* = 7.2, Me(27)), 0.95 (*d*, *J* = 7.2, Me(21)), and 3.71 (*s*, MeO), and of three oxygenated CH groups at  $\delta$ (H) 4.77 (*d*, *J* = 6.3, H–C(11)), 3.50–3.54 (*m*, H–C(3)), and 3.53–3.56 (*m*, H–C(23)), as well as of one olefinic proton at  $\delta$ (H) 5.27 (br. *s*, H–C(6))<sup>1</sup>). The <sup>13</sup>C-NMR spectrum (CDCl<sub>3</sub>) displayed 29 C-signals, including those of 4 olefinic C-atoms at  $\delta$ (C) 147.5 (C(12)), 142.3 (C(5)), 132.6 (C(13)), and 120.8 (C(6)), of a carbonyl group at  $\delta$ (C) 158.6 (N–COO), and of four oxygenated C-atoms at  $\delta$ (C) 71.5 (C(3)), 72.5 (C(11)), 85.0 (C(17)), and 73.0 (C(23)). All Me and olefinic protons were used as starting points to assign the other protons and C-atoms by analysis of HMBC and HMQC correlations. In the HMBC plot,  $\delta$ (H) 4.77 (H–C(11)) showed cross-peaks with  $\delta$ (C) 37.3 (C(8)), 37.2

<sup>1)</sup> Trivial atom numbering; for systematic names, see Exper. Part.

<sup>© 2007</sup> Verlag Helvetica Chimica Acta AG, Zürich



Fig. 1. Key NOE correlations observed in the NOESY experiment of compound 1

(C(10)), 49.3 (C(14)), 132.6 (C(13)), and 147.5 (C(12)). In addition, the long-range correlations between  $\delta$ (H) 3.71(MeO) and 3.13 (*dd*, *J* = 7.2, 7.8, H–C(22)) and  $\delta$ (C) 158.6 (N–COO) were observed. These results established the location of the OH group at C(11) and of the methoxycarbonyl group at the N-

| 1401C. 11- 0             | in C-mining Compounds                                            |                                                                         |                                                         | 12 ( C). 0 m ppm, 1 m 112.                                 |
|--------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|
|                          | 1                                                                |                                                                         | 2                                                       |                                                            |
|                          | $H_1$                                                            | <sup>13</sup> C HMBC                                                    | H <sub>1</sub>                                          | <sup>13</sup> C HMBC                                       |
| $CH_2(1)$ or $H-C(1)$    | 2.09 dt, $(J = 13.2, 3.2)$ ,<br>1.20 (ddd $I - 13.2, 13.6, 3.2)$ | 37.1 C(2), C(3), C(10), C(19)                                           | 4.79 (br. s)                                            | 71.9 $C(2)$ , $C(3)$ , $C(5)$ , $C(5)$ , $C(10)$ , $C(10)$ |
| CH <sub>3</sub> (2)      | 1.29 - 1.92, 1.56 - 1.59, (2m)                                   | 32.8 C(1), C(3), C(10)                                                  | 1.91 - 1.97, 1.58 - 1.62 (2m)                           | 37.9 C(1), C(3), C(10)                                     |
| $H^{-C}(3)$              | 3.50-3.54(m)                                                     | 71.5 $C(1), C(4)$                                                       | 4.01 - 4.07 (m)                                         | 66.0 $C(1)$ , $C(2)$ , $C(4)$ , $C(5)$                     |
| $CH_2(4)$                | 2.24-2.30 (m),<br>2.33 (dd. J = 12.5. 3.6)                       | 40.7 C(3), C(5), C(6), C(10)                                            | 1.58 - 1.64, 1.56 - 1.60 (2m)                           | 36.6 C(3), C(5), C(6), C(10)                               |
| C(5) or H–C(5)           |                                                                  | 142.3                                                                   | $1.83 - 1.88 \ (m)$                                     | 36.7 C(6), C(9), C(10)                                     |
| $H-C(6)$ or $CH_2(6)$    | 5.27 (br. s)                                                     | 120.8 C(4), C(7), C(10)                                                 | 1.73 - 1.81 (m),                                        | 27.9 C(4), C(7), C(10)                                     |
| $\operatorname{CH}_2(7)$ | 2.34-2.40, 1.70-1.76 (2m)                                        | 31.6 C(9)                                                               | 1.42 (01. a. J = 12.0)<br>1.85 - 1.87, 1.47 - 1.52 (2m) | 25.4 C(8), C(9)                                            |
| H-C(8)<br>H-C(9)         | $1.72 - 1.80 \ (m)$<br>$1.12 - 1.15 \ (m)$                       | <i>31.3</i> C(9), C(10), C(14), C(15)<br><i>57.3</i> C(1), C(7), C(10). | $1.48 - 1.54 \ (m)$<br>2.12 (br. s)                     | 42.8 C(9), C(10), C(14), C(15)<br>54.9 C(1), C(7), C(8),   |
|                          |                                                                  | C(11), C(19)                                                            |                                                         | C(10), C(11), C(19)                                        |
| $H^{(11)}$ or $C(11)$    | 4.77 (d, J = 6.3)                                                | 72.5 C(8), C(10), C(12),<br>C(13) C(14)                                 |                                                         | 208.3 C(8), C(10), C(12),<br>C(13) C(14)                   |
| C(12)                    |                                                                  | 147.5<br>122 6                                                          |                                                         | 137.6<br>146.0                                             |
| H-C(14)                  | $1.58 - 1.60 \ (m)$                                              | 49.3 C(13), C(15)                                                       | $2.00-2.10 \ (m)$                                       | 45.1 C(8), C(13), C(15)                                    |
| $CH_{2}(15)$             | 1.84 - 1.87, 1.31 - 1.40 (2m)                                    | 24.9 C(14), C(17)                                                       | 1.96 - 2.00, 1.25 - 1.31 (2m)                           | 24.5 C(14), C(17)                                          |
| $CH_2(16)$               | 1.82 - 1.85, 1.55 - 1.60 (2m)                                    | 31.2 C(14), C(15)<br>85.0                                               | 1.94 - 1.98, 1.54 - 1.60 (2m)                           | 31.5 C(14), C(15), C(17)<br>86.7                           |
| Me(18)                   | 1.91 (s)                                                         | 14.1 C(12), C(13), C(17)                                                | 2.14 (s)                                                | 12.4 C(12), C(13), C(17)                                   |
| Me(19)                   | 1.23 (s)                                                         | 21.9 C(1), C(5), C(9), C(10)                                            | $\frac{1.02}{2}$ (s)                                    | 17.7  C(1), C(5), C(9), C(10)                              |
| H-C(20)                  | 2.94 (quint., $J = 7.2$ )<br>0.05 ( $J = T = 7.2$ )              | 41.1 C(13), C(21), C(22), C(23)                                         | 2.55 (quint., J = 7.8)                                  | 40.6 C(13), C(21), C(22), C(23)                            |
| H-C(22)                  | 3.13 (dd, J = 7.2, 7.8)                                          | 63.2 C(20), C(21), C(22)                                                | 2.73 (t, J = 9.0)                                       | 66.7  C(20), C(21), C(23), C(24)                           |
|                          |                                                                  | C(23), C(24), N–COO                                                     | ×                                                       |                                                            |
| H-C(23)                  | 3.53 - 3.56 (m)<br>2.15 - 2.26 (m) $1.05 (2 - 1 - 0.6)$          | 73.0 C(20), C(22)                                                       | 3.34 - 3.40 (m)                                         | 76.3 C(20), C(22), C(24)                                   |
| СП <sub>2</sub> ( 24 )   | $z_{12} - z_{12} - z_{12} (m), 1.00 (q, J = 9.0)$                | C(25), C(22), C(23), C(27), C(27)                                       | $2.20 \ (m, J = 11.4, 5.2),$<br>1.23 $(q, J = 11.4)$    | C(25), C(25), C(25), C(27), C(27)                          |
| H-C(25)                  | $1.83 - 1.88 \ (m)$                                              | 28.5 C(27)                                                              | 1.66 - 1.73 (m)                                         | 31.4 C(24), C(27)                                          |
| $CH_2(26)$               | $2.79 \ (dd, J = 13.2, 8.5),$                                    | 51.6 C(22), C(24), C(25), C(27)                                         | 3.07 (dd, J = 13.2, 4.2),                               | 54.5 C(22), C(24), C(25), C(27)                            |
| Me(27)                   | $2.00 \ (au, J = 13.2, 4.2)$<br>1.01 $(d, J = 7.2)$              | 20.0 C(24), C(25), C(26)                                                | (1, J = 12.0)<br>(1, 0) $(d, J = 7.2)$                  | 18.9 C(24), C(25), C(26)                                   |
| N-COO                    |                                                                  | 158.6                                                                   |                                                         |                                                            |
| MeO                      | 3.71(s)                                                          | 52.6 N-COO                                                              |                                                         |                                                            |

Table. <sup>1</sup>H- and <sup>13</sup>C-NMR Data of Commounds 1 (in CDC),) and 2 (in CDC),(CD,OD)<sup>1</sup>). At 300 (<sup>1</sup>H) or 75 MHz (<sup>13</sup>C). ô in ppm. J in Hz.

1040

## Helvetica Chimica Acta – Vol. 90 (2007)

atom. The above conclusions and NMR experiments (<sup>1</sup>H- and <sup>13</sup>C-NMR, HMBC, and HMQC) suggested that the structure of **1** is identical to that of verapatuline [3], except for the C(11)=O group of verapatuline which is replaced by a CH(11)–OH moiety in **1**. The relative configuration of compound **1** was established by a NOESY experiment (*Fig. 1*).

Compound **2** was obtained as white powder. Its molecular formula  $C_{27}H_{41}NO_4$  was determined by pseudomolecular-ion peaks at m/z 444 ( $[M + H]^+$ ) in the ESI-MS and 444.2136 ( $[M + H]^+$ ) in the HR-MS. The structure of **2** was established as ( $1\beta$ , $3\alpha$ , $5\beta$ )-1,3-dihydroxyjervanin-12-en-11-one by analysis of <sup>1</sup>H- and <sup>13</sup>C-NMR, HSQC, HMBC, and NOESY data (*Table* and *Fig. 2*).



Fig. 2. Key NOE correlations observed in the NOESY experiment of compound 2

The <sup>1</sup>H-NMR spectrum of compound **2** exhibited signals of four Me groups at  $\delta(H) 2.14$  (*s*, Me(18)), 1.02 (*s*, Me(19)), 1.00 (*d*, J = 7.2, Me(27)), and 0.98 (*d*, J = 6.6, Me(21)) and of three oxygenated CH groups at  $\delta(H) 4.79$  (br. *s*, H–C(1)), 4.01–4.07 (*m*, H–C(3)), and 3.34–3.40 (*m*, H–C(23)). The <sup>13</sup>C-NMR spectrum showed 27 C-signals, which included those of 2 olefinic C-atoms at  $\delta(C)$  137.6 (C(12)) and 146.0 (C(13)), of a carbonyl group at  $\delta(C)$  208.3 (C(11)), and of four oxygenated C-atoms at  $\delta(C)$  71.9 (C(1)), 66.0 (C(3)), 86.7 (C(17)), and 76.3 (C(23)). Analysis of HMBC and HMQC correlations, suggested a close resemblance of **2** to 1-hydroxy-5,6-dihydrojervine [4]. The NOESY experiment revealed correlations between  $\delta(H)$  1.02 (*s*, Me(19)) and 1.48–1.54 (*m*, H–C(8)), between  $\delta(H)$  4.79 (br. *s*, H–C(1)) and 2.12 (br. *s*, H–C(9)), and between  $\delta(H)$  4.01–4.07 (*m*, H–C(3)) and 1.83–1.88 (*m*, H–C(5)) (*Fig.* 2), implying the  $\beta$ -position of OH–C(1) (axial orientation), the  $\alpha$ -position of OH–C(3) (equatorial orientation), and the  $\beta$ -position of H–C(5).

The known compounds 3-6 were identified by comparison of their physical and spectral data with those reported in [3-5].

Compounds 1-6 were examined for their dose-response effects of cytotoxicity against the human glioma cell line SF188 [6][7]. Cell viability measured using the MTT assay showed that the  $IC_{50}$  of compounds **3** and **4** were *ca.* 97.8 µM and 157.4 µM respectively. The  $IC_{50}$  of the positive control, (20*S*)-protopanaxadiol, against cell line SF188 was 12.5 µM. On the other hand, compounds **1**, **2**, **5**, and **6** showed no cytotoxicity against the human glioma cell line SF188.

This work was financially supported by the *Program for New Century Excellent Talents in University* of *Peoples Republic of China* (NO.NCET-04-0289). We thank *Shenyang Jiqi Pharmaceutical Product Ltd. Co.* of China for processing medical material of the roots and rhizomes of *Veratrum nigrum* L.

## **Experimental Part**

General. Column chromatography (CC): silica gel (200-300 mesh; Qingdao Marine Chemical Group, Co.). Melting point: Mel-Temp capillary melting point apparatus. Optical rotation: Perkin-Elmer

241MC polarimeter. NMR Spectra: Bruker AV-600 and Bruker ARX-300 spectrometer; SiMe<sub>4</sub> as internal standard;  $\delta$  in ppm, J in Hz. ESI-MS: Finnigan LCQ mass spectrometer. HR-MS: QSTAR LCQ mass spectrometer.

*Plant Material.* The roots and rhizomes of *Veratrum nigrum* L. were collected in Hunan province, P. R. China, in 2004 and identified by Prof. *Qishi Sun*, Shenyang Pharmaceutical University. A voucher specimen (No. 20040710) is deposited in the Research Department of Natural Medicine, Shenyang Pharmaceutical University.

*Extraction and Isolation.* The dried roots and rhizomes of *Veratrum nigrum* L. (10 kg) were extracted with 95% EtOH ( $3 \times 50$  l) under reflux. The extract was concentrated and then acidified (pH 3) with HCl followed by filtration, and the filtrate was basified (pH 10) with NH<sub>4</sub>OH and then extracted with CHCl<sub>3</sub>, resulting in 50 g of crude alkaloids. This material was subjected to CC (silica gel, gradient petroleum ether/acetone): *Fractions A1–A4. Fr. A1*, eluted with petroleum ether/acetone 100:20, was further purified by recrystallization to give **3** (5.1 g). *Fr. A2*, eluted with petroleum ether/acetone 100:30, was subjected to CC (silica gel) to yield **4** (50 mg), eluted with CHCl<sub>3</sub>/acetone 10:2, and **1** (40 mg), eluted with CHCl<sub>3</sub>/acetone 10:5): **6** (35 mg). *Fr. A4*, eluted with petroleum ether/acetone 30:70, was subjected to CC (silica gel, petroleum ether/acetone/MeOH 30:70:8): **2** (25 mg) and **5** (1.1 g).

Determination of Cell Viability. The human glioma cell line SF188 was grown as a monolayer in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS). Cells were maintained in a humidified atmosphere of 5% CO<sub>2</sub> in air at 37°. Sensitivity of SF188 cells to compounds **1–6** were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-1*H*-tetrazolium bromide (MTT) assay. Briefly, exponentially growing cells were plated into 96-well plates (30000 cells/well). After 24 h, serial dilutions of the drugs were added to the cells, which were incubated for 24 h Then the cells were incubated with 10 µl of MTT (5 mg/ml) at 37° for 5 h. DMSO (100 µl) was added to solubilize the formazan crystals formed, and the optical densities at 570 nm were measured by using a microplate reader.

*Neoverapatuline* (=(2'R,3S,3'R,3'aS,6'S,6aS,6bS,7'aR,11S,11aS,11bR)-1,2,3,4,5',6,6',6a,6b,7,7',7'a, 8,11,11a,11b-Hexadecahydro-3,11-dihydroxy-3',6',10,11b-tetramethylspiro[9H-benzo[a]fluorene-9,2'(3'H)-furo[3,2-b]pyridine]-4'(3'aH)-carboxylic Acid Methyl Ester; **1**): White powder (CHCl<sub>3</sub>). M.p. 155–156°. [a]<sup>20</sup><sub>D</sub> = -6.0 (c = 0.015, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>) and <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>): *Table*. ESI-MS (pos.): 486 ([M + H]<sup>+</sup>). HR-MS: 486.2321 ([ $C_{29}H_{43}NO_5 + H$ ]<sup>+</sup>; calc. 486.2326).

 $\begin{array}{ll} (1\beta,3\alpha,5\beta)-1,3-Dihydroxyjervanin-12-en-11-one & (=(1R,2'R,3S,3'R,3'aS,4aR,6'S,6aS,6bS,7'aR,11aS,11bR)-2,3,3'a,4,4',4a,5,5',6,6',6a,6b,7,7',7'a,8,11a,11b-Octadecahydro-1,3-dihydroxy-3',6',10,11b-tet-ramethylspiro[9H-benzo[a]fluorene-9,2'(3'H)-furo[3,2-b]pyridine]-11(1H)-one;$ **2** $): White powder (CHCl<sub>3</sub>). M.p. 239-240°. [a]_D<sup>2</sup> = -57 (c = 0.010, MeOH/CHCl<sub>3</sub>). <sup>1</sup>H-NMR (300 MHz, MeOD/CDCl<sub>3</sub>) and <sup>13</sup>C-NMR (75 MHz, MeOD/CDCl<sub>3</sub>): Table. ESI-MS (pos.): 444 ([M+H]<sup>+</sup>). HR-MS: 444.2136 ([C<sub>27</sub>H<sub>41</sub>NO<sub>4</sub>+H]<sup>+</sup>; calc. 444.2143).$ 

## REFERENCES

- [1] J. Tang, H. L. Li, H. Q. Huang, W. D. Zhang, Prog. Pharm. Sci. 2006, 30, 206.
- [2] Y. H. Xu, Y. H. Xu, Oversea Medicine Plant Medicine Section 2002, 17, 185.
- [3] Y. Tezuka, T. Kikuchi, W. J. Zhao, J. Chen, Y. T. Guo, J. Nat. Prod. 1998, 61, 1078.
- [4] K. A. E. Sayed, J. D. Mcchesney, A. F. Halim, A. M. Zahloul, I. S. Lee, Int. J. Pharm. 1996, 34, 161.
- [5] S. Kadota, S. Z. Chen, J. X. Li, G. J. Xu, T. Namba, *Phytochemistry* 1995, 38, 777.
- [6] J. T. Rutka, J. R. Giblin, D. Y. Dougherty, H. C. Liu, J. R. McCulloch, C. W. Bell, R. S. Stern, C. B. Wilson, M. L. Rosenblum, Acta Neuropathol. 1987, 75, 92.
- [7] N. Ishii, D. Maier, A. Merlo, M. Tada, Y. Sawamura, A. C. Diserens, E. G. Vanmeir, *Brain Pathol.* **1999**, *9*, 469.

Received, January 23, 2007